
Probabilistic reconstruction of geologic facies

Laura Guadagnini a, Alberto Guadagnini a,
Daniel M. Tartakovsky b,

aD.I.I.A.R., Politecnico di Milano, Italy
bTheoretical Division, Los Alamos National Laboratory, USA

Abstract

Random Domain Decomposition (RDD) provides a powerful tool for quantifying
uncertainty in flow simulations, when both the geologic makeup of a porous medium
and its hydraulic parameters are under-specified by data. Its prior applications dealt
with flows in porous media whose internal compositions are amenable to simple
parameterizations. This study provides a means for probabilistic reconstruction of
boundaries between geologic facies. We apply our general approach to multiple data
sets to reconstruct highly permeable zones within an aquitard in the Bologna (Italy)
aquifer system and demonstrate how it can be used in conjunction with RDD.
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1 Introduction

With rapid advances in computing power and numerical techniques, insuffi-
cient medium parametrization (site characterization) seems to be one of the
remaining stumbling blocks on the road to describing efficiently and reliably
flow and transport in heterogeneous subsurface environments. As the size of
computational domains increases (it is not uncommon to see numerical mod-
els with millions of degrees of freedom), the need to quantify uncertainty
associated with assigning values of hydraulic and transport parameters (e.g.,
hydraulic conductivity, porosity, and dispersivity) to the nodes of a grid where
data are not available is becoming increasingly important. Complicating the
matter further is an often occurring disparity between a scale (or scales) on
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which data have been collected and a scale on which they are used in numerical
simulations.

Stochastic methods have emerged as a powerful tool for making predictions
and quantifying predictive uncertainty in subsurface modeling. However, most
of these approaches are limited to mildly heterogeneous porous media. For
(semi-) analytical methods, such as moment equations, this requirement is
essential to guarantee the accuracy of closure approximations. For purely nu-
merical methods, such as Monte Carlo Simulations, it is needed to keep the
number of realizations manageable. Of course, the more data are available,
the higher the degree of heterogeneity for which stochastic methods are reli-
able (Guadagnini and Neuman, 1999). Advances in data collection and data
assimilation techniques make well-conditioned simulations a reality.

When data are scarce, however, the question remains how to make the best use
of them within the stochastic framework. The solution we propose is to utilize
available data in a way that significantly increases their information content.
Specifically, we demonstrate how available data, e.g., hydro-stratigraphic mea-
surements, can be used to estimate the statistics of a facies’ geometry. These
data are further combined with other types of data, e.g., hydraulic conductiv-
ity measurements, to obtain a parameter’s distribution within each facies. This
is in contrast with existing stochastic approaches that either ignore internal
macro-structures of porous media completely (the so called homogeneous ap-
proximation) or rely on statistically homogeneous multi-modal distributions.
For the detailed review of these and other methods, such as data de-trending,
we refer the interested reader to Winter et al. (2003).

A probabilistic description of facies’ geometry is the input required by the
Random Domain Decomposition (RDD) approach (Winter and Tartakovsky,
2000, 2002; Winter et al., 2002). The key advantage of RDD is that it pro-
vides robust closures (accurate approximations) for moment equations even
when the medium is highly heterogeneous. RDD makes use of the fact that
a high degree of heterogeneity usually arises from the presence of different
geologic facies (understood here in a very broad sense to include fractured
regions, inclusions, layering, etc.) in the subsurface environment. Specifically,
RDD replaces a non-Gaussian, multi-modal hydraulic and/or transport pa-
rameter field Y (x) of large variance σ2

Y , with a two-scale random process.
The large scale randomness arises due to uncertainty in internal boundaries
of geologic facies. The small scale randomness corresponds to uncertainty in
hydraulic and/or transport parameters within each facies. In other words, a
non-Gaussian, multi-modal probability density function p(Y ) is replaced with
a joint probability density function p(Y, Γ) = p(Y, |Γ)p(Γ). The conditional
probability density function, p(Y, |Γ), describes the distribution of Y within
each geologic facies conditioned on the boundary location Γ. As such it has
convenient properties, such as uni-modality, small variances, etc.
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Within the RDD framework, calculating the statistics of system parameters,
such as mean hydraulic head 〈h〉, is carried out in two steps. The first step
consists of calculating the conditional statistics, e.g.,

〈h〉Γ =
∫

hp(Y, |Γ)dY. (1)

The second step is averaging in probability space of Γ,

〈h〉 =
∫
〈h〉Γp(Γ)dΓ. (2)

Evaluating (1) requires a closure approximation, e.g, a perturbation expansion
in the variance of log conductivity σ2

Y . This formally limits applicability of
such approximations to mildly heterogeneous porous media, i.e., media with
σ2

Y � 1. As demonstrated by Winter et al. (2002), the RDD approach extends
the range of applicability of a perturbation closure of the moment equations
to heterogeneous media with σ2

Y as high as 24.

One of the main unresolved issues of the RDD approach is how to obtain p(Γ)
from available (scarce) data. Another is evaluation of the functional integral
in (2). Previous applications of RDD dealt with idealized geometries, such
as square inclusion (Winter et al., 2002) or perfect layering (Guadagnini et
al., 2003), which makes their statistical parametrization straightforward. This
study provides a means to apply RDD to realistic settings with complicated
geologic structures, which do not lend themselves to simple parameterizations.

We formulate our general approach for the probabilistic geometry reconstruc-
tion in Section 2. The strategy we pursue here is somewhat similar to that pro-
posed by Ritzi et al. (1994). The key difference is that their method provides
an estimate of the facies’ geometry without quantifying the uncertainty asso-
ciated with such a prediction. Our method provides a probabilistic description
of the internal boundary Γ in the form of a probability density function p(Γ).
We demonstrate applicability of the approach to real world simulations, by us-
ing data sets collected at an aquifer system of Bologna, Italy (Section 3). The
robustness and accuracy of the approach are analyzed in detail in Section 4 for
a synthetic layered media. RDD is then used in Section 5 to calculate, with-
out resorting to expensive Monte Carlo simulations, mean hydraulic head and
head variance. Section 6 compares our approach with alternative methods.

2 General Approach

A typical site characterization yields multiple data sets that describe different,
but often interconnected, features of a porous medium, such as its hydraulic
conductivity, stratigraphy, etc. Often, these data sets correspond to different
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support volumes and possess variable degrees of reliability. We leave these
important factors for future studies, and assume that all data are error free
and are collected on the same support scale.

Let Np be a number of parameters A(p) (p = 1, . . . , Np). Each parameter A(p)

is sampled at locations x
(p)
i (i = 1, . . . , N (p)

s ), with A(p)
i = A(p)(xi) indicating

the corresponding measurements. Reconstructing boundaries of geologic facies
from small-scale data and estimating the corresponding uncertainties are our
main goals. For the sake of simplicity, we assume that a medium consists of
two geologic facies, F1 and F2. A typical pdf for a parameter A(p) becomes
bi-modal (see, for example, Fig. 2 that shows a frequency distribution for a
sedimentologic data set used below in our analysis of the Bologna site).

The procedure we propose consists of the following steps:

Step 1: Constructing the indicator function. Several parameters are often
sampled at the same locations. Let N0 be the number of locations where
measurements of more than one parameter are available. Then the total of
N =

∑Np

j=1 N (j)
s − ∑No

j=1 N (j)
s + No locations have at least one measurement.

To each of these locations, xi (i = 1, . . . , N), we assign a (random) indicator
function,

I(x) =

{
1 x ∈ F1

0 x ∈ F2.
(3)

The following rule is used to infer values of the indicator function from the
data sets A(p) (p = 1, . . . , Np). If a measurement falls within the interval

A−1 ≤ A(p)
i ≤ A+

1 , then the measurement point xi ∈ F1, i.e., I(xi) = 1.
Otherwise, the measurement location xi ∈ F2, i.e., I(xi) = 0. The bounds A−1
and A+

1 are inferred from analyzing corresponding bi-modal distributions.

Step 2: Estimating the relative volumes occupied by each facies. Volumetric
fractions V1 and V2 occupied by the facies F1 and F2, respectively, are esti-
mated by computing the global de-clustered mean of the indicator function
I(xi), where i = 1, . . . , N . De-clustering is required to avoid systematic bias
introduced by uneven distributions of measurement points (Issaks and Srivas-
tava, 1989).

Step 3: Structural analysis and spatial statistics of I(x). A correlation struc-
ture of the indicator function I(x) is computed via a sample variogram. The
ensemble mean, 〈I(x)〉, and variance, σ2

I (x), of the indicator function are com-
puted by ordinary Kriging. This yields the probability, P [x ∈ F1], of encoun-
tering the facies F1 at a point x, since P [x ∈ F1] = 〈I(x)〉. Equally important
to note is that 〈I(x)〉 represents an estimate of the local volumetric fraction
of the facies F1.

Step 4: Calculating the probability distribution of I at each estimation point.
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Fig. 1. Aquitard Alpha separating two aquifers in the Bologna aquifer system.

This step requires an assumption that I(x) is a truncated Gaussian field,
so that the statistics computed by the point Kriging (mean and variance)
uniquely specifies p(I;x), a single-point probability density function of I(x).

Step 5: Assigning probabilistic weights to the boundaries. In the spirit of Ritzi
et al. (1994), we assume that the mean boundary between the materials F1 and
F2 is defined by points x, where P [x ∈ F1] = V1. This preserves the relative
volumetric fractions occupied by each facies, as inferred from available data
in Step 2. Then for any suitable spatial discretization 4 of the pdf p(I,x), we
compute

W(x) =
∫ V1+4/2

V1−4/2
p(I;x)dI. (4)

The isolines W(x) = Wi define boundaries Γi between the facies F1 and F2

corresponding to probabilistic weights Wi.

Once the weights Wi are calculated, statistics of the system states, such as
the mean hydraulic head in (2), is readily approximated by

〈h〉 =
∑

i

Wi〈h〉Γi
. (5)
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Fig. 2. Frequency distribution of [gr + sa]/th, the cumulative thickness of gravel
(gr) and sand (sa) relative to the total thickness (th) in the aquitard Alpha. Such
a distribution is typical for parameters that characterize porous media composed of
two distinct facies.

3 Application to the Bologna Aquifer System (Italy)

We use our probabilistic facies reconstruction to analyze composition of an
aquitard that separates two aquifers in the alluvial aquifer system of the city
of Bologna, Italy (Figure 1). The aquitard serves as a natural barrier that
separates the polluted upper aquifer from the lower aquifer that is used for
municipal water supplies. The available 39 geognostical borehole logs and 183
well-logs reveal that the aquitard’s thickness is highly variable, changing from
1− 3m in the vicinity of the peak of an alluvial fan to 8− 12m near the well
fields, to even larger values in the northern part (Guadagnini et al., 2002). The
deposits are mainly silty-clayey, with local inter-bedding of coarser material.
A quantity [gr + sa]/th, representing the cumulative thickness of gravel (gr)
and sand (sa) relative to the total thickness (th), is generally less than 0.2.
However, it displays local peaks larger than 0.8, indicating possible discontinu-
ities within the aquitard itself. We use hydro-stratigraphic data to categorize
materials within the aquitard Alpha into two classes (i.e., low and high perme-
ability facies) according to the frequency distribution of [gr + sa]/th shown in
Fig. 2. Presence of the highly conductive regions indicates possible connections
between the upper and lower aquifers.

Following the steps outlined in the previous section, we use sedimentologi-
cal and stratigraphic data sets to assign the indicator function I(x) to the
low-conductivity facies, F1. Specifically, a point x is assigned to either low-
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Fig. 3. A sample variogram for the indicator function I(x).

or high-conductivity facies according to values of both (a) local thickness of
the aquitard (as estimated by stratigraphic analysis) and (b) percentage of the
coarse-grain materials integrated along a stratigraphic column within the iden-
tified thickness. A global de-clustered average indicates that V1 = 0.81, i.e.,
that the low-conductivity facies occupies about 80% of the sampled aquitard.

The next step is to use a sample variogram to estimate a spatial correlation of
I(x). We computed several directional variograms using an angular tolerance
of 30 degrees along the directions oriented at azimuths of 0, 45, 90 and 135
degrees from the North. The sample variograms exhibit no clear evidence of
anisotropy. Fitting an isotropic exponential model with a nugget to the sample
variograms results in nugget = 0.08, sill = 0.11 and correlation scale = 350
m. Figure 3 shows the corresponding variogram.

Using point Kriging, and selecting probability cutoff P [x ∈ F1] = V1 = 0.81,
yields an estimate (ensemble mean) of the facies geometry, which is shown in
Figure 4. Figure 5 depicts boundaries between the two facies that correspond
to the probabilistic weights 0.069 and 0.044. The probability levels correspond-
ing to these boundary configurations are 74% and 87%, respectively.

Reliability of our facies reconstruction approach is corroborated by piezometric
data (not reproduced here), which suggest connections between upper and
lower aquifers within the identified areas. To further investigate the accuracy
and robustness of the proposed approach, we consider a synthetic example. Of
particular interest in this example is the influence of measurement locations
on one’s ability to delineate facies.
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Fig. 4. Estimate of the facies geometry.

Fig. 5. Facies geometries computed with 74% (a) and 87% (b) probability.

4 Synthetic Example

We start by generating a heterogeneous Y = ln K field, whose properties, in-
cluding facies’ geometry, are known. Next we select 100 points, where conduc-
tivity is known (measured), and use these data to reconstruct the boundary.
To investigate the impact of measurement locations we consider two scenarios.
In the first, the data points are uniformly distributed throughout the domain,
without any regard for a boundary location. In the second, the measurements
are denser around a supposed boundary between the two materials. The latter
scenario occurs in practice, when expert knowledge is incorporated into the
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Fig. 6. Layered medium with (a) uniformly and (b) nonuniformly distributed mea-
surement points. The points are assigned values of the indicator function, such that
I(x) = 1 if x is in the low conductivity layer and = 0 otherwise.

modeling process.

Consider a square domain within a layered medium composed of two contrast-
ing materials. The layers are separated by a straight line that passes through
the center of the square.

The domain is discretized by a grid of 104 square elements (100 rows and 100
columns) of uniform size, 4 = 0.2, with 5 points per correlation length of Y .
The log conductivity is correlated within each layer but there is no correlation
between the conductivities of different layers. Values of Y are generated at
the center of elements using GSLIB (Deutsch and Journel, 1992). The two
sampling strategies are shown in Figure 6.

Following the procedure outlined in Section 2 leads to

(1) the indicator function I(x) = 1 when x ∈ F1 (a low conductivity facies)
and = 0 when x ∈ F2 (a high conductivity facies);

(2) the volumetric fractions V1 = V2 = 0.50;
(3) the sample variograms displaying a zonal anisotropy. Regardless of the

sampling strategy, fitting an isotropic Gaussian model with a nugget to
the sample variograms gives nugget = 0.02 and range = 20. For the
uniform sampling, sill = 0.5 in the N/S direction = 0.09 in the E/W di-
rection. The alternative sampling results in sill = 0.5 in the N/S direction
and = 0.07 in the E/W direction;

(4) the estimate (ensemble mean) of the boundary, which is defined by P [x ∈
F1] = V1 = 0.50; and the probabilistic weights associated with each
boundary configuration (Figs. 7 and 8).

Not surprisingly, this nonuniform sampling increases the accuracy of the esti-
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Fig. 7. Distributions of weights for the layered medium with (a) uniformly and (b)
nonuniformly distributed measurement points.

mates (ensemble means) of the boundary. At the same time, Figs. 7 show that
the two sampling strategies play virtually no role in assigning probabilistic
weights to the boundaries. This is also confirmed by Figs. 8 that compare the
boundary’s probabilistic reconstructions corresponding to the two sampling
strategies. This somewhat unexpected result can be explained by the simple
geometry (a straight line) combined with the particular arrangements of data
points used in our example. We expect that for more complicated spatial con-
figurations, such as the one considered in the previous section, the placement
of data points will play a crucial role in reducing uncertainty in the boundary
reconstruction.
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Fig. 8. Probabilistic reconstructions of the boundary between the two layers ob-
tained from (a) uniformly and (b) nonuniformly distributed measurement points.
Each isoline represents a boundary configuration between the two layers, which
corresponds to a given weight.

It is interesting to note that the maximum weight does not correspond to the
horizontal line located in the middle of the square domain. This is so, because
some of the measurement points with I = 1 are closer to the ”true” separation
line than the points with I = 0 (Fig. 6). This results in a mean (estimated)
boundary that somewhat differs from the ”true” location of the layering.

5 Quantifying Uncertainty in Flow Simulations

To demonstrate how the probabilistic facies delineation can be used in conjunc-
tion with Random Domain Decomposition (RDD), we consider flow through a
medium with the internal boundaries analyzed in Section 1. Flow simulations
in this section differ from reality in two important aspects. First, we impose
artificial boundary conditions, which translates into an artificial flow regime.
Second, due to lack of conductivity data, we arbitrarily select heterogeneous
distributions of the hydraulic conductivity of each facies.

Specifically, we assume that within each facies the log hydraulic conductivity,
Y = ln K, is a statistically homogeneous Gaussian field with an exponential
correlation function. Mean log conductivities of the low and high permeability
zones are set to 〈Ylow〉 = 3.5 and 〈Yhigh〉 = 7.0, respectively, when hydraulic
conductivities are expressed in [cm/day]. We further assume that log con-
ductivity within each facies has the same variance σ2

Y = 1, correlation scale
λ, and that the conductivities of the two facies are uncorrelated. All these
assumptions are made for the sake of convenience only, since the general the-
ory of RDD allows for different covariance structures within facies and for

11



cross-correlations between facies.

A correlation function for the hydraulic conductivity of the composite medium
is obtained by averaging the conditional correlation functions over all possible
realizations of the materials distribution. Even though the two materials are
assumed to be uncorrelated, there exists a transitional zone, where the points
from the two materials are correlated. Within this zone, membership of a
given point in a particular material is uncertain. Averaging over the boundary
distribution smooths the conditional correlation function of conductivity.

Consider steady-state flow through the rectangular domain shown in Figs. 4
and 5. Flow is driven by head gradient of about 0.2% due to the constant
heads HA = 21.0m and HB = 1.0m that are imposed on the left and right
hand boundaries of the domain, respectively. The remaining two boundaries
are impermeable. Both the size of the flow domain (7.2 × 6.8km) and the
background hydraulic gradient are representative of the actual field conditions.
A pumping well is located in the middle of the field and operates at the
constant flow rate of 100m3/d.

The flow domain is discretized by a grid of 19484 square elements (144 rows
and 136 columns) of uniform size, 4 = 50m, with 5 points per correlation
length of Y . We obtain the conditional hydraulic head statistics (conditional
mean and variance) by solving the RDD moment equations (Winter and Tar-
takovsky, 2000, 2002) with a stochastic finite element code of Guadagnini and
Neuman (1999). The accuracy of approximations that is required to derive
these moment equations is assessed by comparison with Monte Carlo sim-
ulations. Since a complete stabilization of the Monte Carlo statistics is not
necessary for such a comparison to be meaningful (Guadagnini and Neuman,
1999), 3000 conditional Monte Carlo simulations for each of the log conduc-
tivity fields were used. Since 21 realizations of the material distributions were
considered in this study, we performed a total of 21 × 3000 = 63, 000 Monte
Carlo simulations. Such a huge computational burden makes the use of Monte
Carlo simulations to compute statistics of transient flow and/or transport
problematic. RDD makes the stochastic analysis of such systems feasible.

We find that an overall agreement between the two solutions is excellent,
except in the vicinity of the pumping well. This is in line with previous results
of Guadagnini and Neuman (1999). The mean and variance of the hydraulic
head computed with RDD are shown in Fig. 9.

To ascertain the relative importance of the two sources of uncertainty (facies
geometry versus facies conductivity), we show in Fig. 10 the mean and variance
of the hydraulic head corresponding to the random facies geometry but the
deterministic (corresponding to their respective means) hydraulic conductivi-
ties. Comparing Figs. 9 and 10 reveals that this simplification leads to similar
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Fig. 9. Mean (a) and variance (b) of hydraulic head resulting from uncertain facies
geometry and hydraulic conductivity.

Fig. 10. Mean (a) and variance (b) of hydraulic head resulting from uncertain facies
geometry and known (deterministic) hydraulic conductivity.

qualitative spatial patterns of the mean head and the head variance. However,
quantitatively results differ considerably between the two models, especially
with regard to hydraulic head variance. This is in accordance with earlier re-
sults of Guadagnini et al. (2003) obtained for stratified media and of Winter
et al. (2003) obtained for a low-permeability inclusion in a high-permeability
matrix.

6 Comparison with alternative models

There exist several approaches that implicitly account for the presence of dif-
ferent geologic facies, without explicitly preserving the facies topology. These
include a homogeneous approximation, deterministic trend models, and mod-
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Fig. 11. Mean (a) and variance (b) of hydraulic head computed with the homoge-
neous approximation.

els resulting in multi-modal distributions of hydraulic conductivity. (We refer
the interested reader to Winter et al. (2003) for a review of these and other
similar approaches.) Such approaches result in statistically homogeneous con-
ductivity distributions. In contrast, RDD gives rise to conductivity fields that
are essentially inhomogeneous, in that their (ensemble) means, variances, and
correlation functions are all space dependent. This distinction is important,
since it is reasonable to expect that points within a geologic facies are better
correlated than points in different facies. RDD accounts for this fact, while
the other models do not.

We have analyzed errors introduced by deterministic trend models and have
contrasted them with RDD elsewhere (Winter et al., 2002). Here we provide a
similar comparison for the homogeneous model and a model with a bi-modal
conductivity distribution. The former constructs a statistically homogeneous
field, whose statistics is determined as the mixture. The latter expresses the
local conductivity as a weighted sum of the conductivities within each facies,
i.e.,

Keq = P [I(x) = 1]Klow + P [I(x) = 0]Khigh. (6)

The probabilities P [I(x) = 1] and P [I(x) = 0] = 1 − P [I(x) = 1] are de-
termined by the Kriging estimate of I(x). For each facies we generate 3000
log-conductivity fields with the same statistics as used before and then con-
struct realizations of K(x) according to Eq. (6). Standard approaches for
deriving bi-modal (dual continuum) distributions of hydraulic conductivity
(Shvidler, 1988; Rubin, 1995) assume that the volumetric fractions of the ma-
terials are constant over an entire flow domain. The approach we use results
in a statistically inhomogeneous conductivity field.

Figures 11 and 12 show the hydraulic head statistics computed with the ho-
mogeneous approximation and the bi-modal distribution model, respectively.
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Fig. 12. Mean (a) and variance (b) of hydraulic head resulting from the bi-modal
conductivity distribution. The latter is computed by (6) and is shown on the gray
scale that varies from dark (low conductivity) to white (high conductivity).

The homogeneous approximation significantly overestimates the head and un-
certainty (as quantified by the head variance) at the well. These results are
consistent with those reported by Guadagnini et al. (2003). The bi-modal dis-
tribution model leads to the mean hydraulic head that is qualitatively and
quantitatively similar to that obtained by considering only randomness in
boundaries between materials. However it significantly underestimates the hy-
draulic head variance.

7 Conclusions

We presented an approach for the probabilistic reconstruction of boundaries
between geologic facies comprising natural porous media. Advantages of our
approach are

• It can assimilate in a seamless manner different sources of information, such
as pumping and tracer tests, well logs, and geophysics.

• It provides a required input for the random domain decomposition approach
(Winter and Tartakovsky, 2000, 2002), which allows one to quantify un-
certainties in both geologic makeup of porous media and hydraulic (and
transport) parameters within each geologic facies.

• It alleviates the need for a closure approximation or Monte Carlo simulations
required by RDD to compute ensemble averages in the probability space of
geologic facies’ geometries.

The proposed approach represents a first attempt at probabilistic reconstruc-
tion of geologic facies and relies on an assumption that the indicator function
is a truncated Gaussian field. When this assumption is not valid, alternative
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approaches must be explored.
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